Simulations of relativistic astrophysical jets

Indranil Chattopadhyay*
ARIES, Manora Peak, Nainital 263002, India

Abstract. In this paper we study simulation of relativistic jets into a uniform ambient medium. We show that the jet evolution depends on the composition parameter.

Keywords: hydrodynamics – relativity – methods: numerical – galaxies: jets

1. Introduction, results and conclusion

Numerical simulation is a very powerful tool to study relativistic jets from centre of galaxies and other black hole candidates (Marti et al. 1997). However, most of the simulations are for fluid with fixed Γ (i.e., adiabatic index) equation of state (EoS). It has been shown that Γ for relativistic gas depends on temperature (Chandrasekhar 1938; Ryu et. al. 2006), as well as, on the composition of the flow (Chattopadhyay and Ryu 2009; Chattopadhyay et. al. 2013). For steady state solutions, it was shown that electron-positron plasma is thermally the least relativistic, but flow with a mixture of positrons, protons and electrons are most relativistic (Kumar et al. 2013; Vyas et. al. 2015). We would like to investigate the same for time dependent studies. The EoS used, relates the enthalpy (h) with Θ and ξ (Chattopadhyay and Ryu 2009) as

$$h = \frac{f + 2\Theta}{2 - \xi + \xi/\eta}; \quad f = (2 - \xi) \left[1 + \Theta \left(\frac{9\Theta + 3}{3\Theta + 2} \right) \right] + \xi \left[\frac{1}{\eta} + \Theta \left(\frac{9\Theta + 3/\eta}{3\Theta + 2/\eta} \right) \right].$$

(1)

Here, $\Theta = kT/m_ec^2$, T is temperature, k Boltzmann constant, c the speed of light, m_e electron mass, ξ is the ratio of proton to electron number densities, and η is the ratio of the proton to electron mass. The equation of motion of relativistic fluid is $T^\nu_\nu = 0$ and $(\rho u^\nu)_\nu = 0$, where T^ν_ν is the energy momentum tensor of the fluid, ρ is the mass density and u^νs are the components of four velocity. The flow eigen structure is exactly same as those developed by Ryu et. al. (2006). Figure 1, shows that the
Figure 1. Contours of ρ and 3-velocity vectors are plotted for electron proton fluid $\xi = 1$ (top), flow with $\xi = 0.5$ (middle) and electron-positron flow or $\xi = 0$ (bottom). The initial jet three velocity $v_j = 0.995$, density $\rho_j = 0.1$, radius is 12 cells and ambient density $\rho_a = 100$ and uniform pressure $p = 0.01$. The resolution is 1536×512 cells. The length is in units of initial jet radius.

Jet morphology and the propagation speed depends on the composition parameter ξ. Moreover, the internal structure of the jet, the cocoon etc, all evolve differently depending on ξ. This will have immense effect on the radiative properties of jets. So numerical simulation with relativistic EoS is important to study the morphology and evolution of astrophysical jets.

References

